
 Chapter 14: Linked lists 393

14 Linked lists

In a previous chapter we looked at two of the abstract data structures, stacks and queues. We will

now examine another abstract data structure, linked lists.

A linked list keeps a set of data in order by means of links between the data items. As an example,

suppose that the secretary of a sports club wishes to keep records of members in order of surname.

A start pointer indicates the position of the first name:

 location 0

Further names can be linked by pointers in the records. A null pointer value indicates the end of the

sequence.

 location 0 location 1 location 2

An important advantage of a linked list, compared to storing data in a simple array or file, is that a

new record can be added at the correct point in the sequence without needing to move any other

data. It is simply necessary to change the pointer value from the previous record in the sequence.

For example, if Jane Clark joins the club:

 location 0 location 1 location 2

 location 3

Deleting records is equally straightforward. This only requires a single pointer value to be changed,

with no need to move any of the data. The empty location can be re-used later. For example, if

Susan Brown leaves the club:

 location 0 location 1 location 2

 location 3

We will develop a record keeping program for the sports club, demonstrating how records can be

addded or deleted in the linked list.

start 0 Mike Andrews

start 0 Mike Andrews 1 Susan Brown 2 Bob Davies null

start 0 Mike Andrews 1 Susan Brown 3 Bob Davies null

Jane Clark 2

start 0 Mike Andrews 3 Bob Davies null

Jane Clark 2

394 Java Programming for A-level Computer Science

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name linkedList, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the linkedList project, and select New / JFrame

Form. Give the Class Name as linkedList, and the Package as linkedListPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Select a Menu Bar component from the Palette and drag this onto the form. Right-click on the File

menu option and select Add From Palette / Menu Item. Right-click again on the File menu option

and add a second Menu Item.

Right-click on each of the menu items, and edit the text values to 'Save' and 'Open'. Change the text

of the Edit menu option to 'Display linked list'.

Right-click again on the menu options 'Save', 'Open' and 'Display linked list'. Rename these as

menuSave, menuOpen and menuDiagram.

 Chapter 14: Linked lists 395

Create another form by right-clicking on linkedListPackage in the Projects window, then selecting

New / JFrame Form. Give the Class Name as 'linkedListDiagram'. Leave the Package name as

'linkedListPackage'.

A linked list can be represented by arrays. Let us consider the example sequence:

 array[0] array[1] array[2]

To link these names in alphabetical order, it will be best to use separate parallel arrays for Surname

and Forename. An additional array will be needed to provide pointers to the next names in the

sequence. We will use a pointer value of -1 to indicate that there are no further data items in the

list.

We will need to provide a start pointer with a value set to 0 to indicate the first data item in the

sequence. Once we start to read the list, the pointer value associated with each name will then lead

to the next name until the end of the list is reached.

Return to the linkedList.java form. Use the Source tab to open the program code page. Add

definitions for the arrays and start pointer, and also set a file name for saving the linked list on disc.

 package linkedListPackage;

public class linkedList extends javax.swing.JFrame {

 int startPointer=0;
 int[] pointer = new int[50];
 String[] surname=new String[50];
 String[] forename=new String[50];
 static String filename = "list.dat";

public linkedList() {

start 0 Mike Andrews 1 Susan Brown 2 Bob Davies null

396 Java Programming for A-level Computer Science

We will add the Java modules at the start of the program which will be needed for saving and
reloading data files.

Complete the setting-up of the linked list arrays by using a loop to initialise all pointer values to -1.

package linkedListPackage;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class linkedList extends javax.swing.JFrame {

 int startPointer=0;
 int[] pointer = new int[50];
 String[] surname=new String[50];
 String[] forename=new String[50];
 static String filename = "list.dat";

 public linkedList() {
 initComponents();

 for (int i=0;i<50;i++)
 {
 pointer[i]=-1;
 }

 }

Click the Design tab to move to the form layout view.

We will be storing the linked list as a set of arrays, but the data can also be displayed on screen in a

table. Add a Table component and rename this as tblLinkedList.

Select the Table and go to the Properties window. Locate the TableModel property and click in the

right column to open the table editing window.

 Chapter 14: Linked lists 397

Set the number of Rows to 50 and Columns to 4. Enter the column Titles and data Types:

 Location Integer

 Surname String

 Forename String

 Pointer Integer

Remove the 'Editable' tick from each of the columns.

Click OK to return to the form display. Check that the column headings are shown correctly, and

that the table includes a vertical scroll bar.

Add a label 'Start pointer', with a text field alongside. Rename the text field as txtStartPointer.

398 Java Programming for A-level Computer Science

Use the Source tab to move back to the program code screen. Add a method below linkedList() to

display the surname, forename and pointer array data in the table. We will also display the value of

the start pointer. Call the displayTable() method from the linkedList() method.

 public linkedList() {
 initComponents();
 for (int i=0;i<50;i++)
 {
 pointer[i]=-1;
 }

 displayTable();

 }

 private void displayTable()
 {
 for (int i=0;i<50;i++)
 {
 tblLinkedList.getModel().setValueAt(i,i,0);
 tblLinkedList.getModel().setValueAt(surname[i],i,1);
 tblLinkedList.getModel().setValueAt(forename[i],i,2);
 tblLinkedList.getModel().setValueAt(pointer[i],i,3);

 }
 txtStartPointer.setText(String.valueOf(startPointer));
 }

Run the program. No names have been entered yet, so the Surname and Forename columns will be

blank. All pointers were initialised to -1.

 Chapter 14: Linked lists 399

Close the program and return to the NetBeans editing screen. Use the Design tab to move to the

form layout view.

Add components below the Table:

 A label 'Surname' with a text field alongside. Rename the text field as txtSurname.

 A label 'Forename' with a text field alongside. Rename the text field as txtForename.

 Buttons with the captions 'Add' and 'Delete'. Rename the buttons as btnAdd and btnDelete.

We can now begin the design of an algorithm for adding names to the linked list. Let us think about

this task in more detail, using the example list:

 array[0] array[1] array[2]

Three different situations could occur:

 The new record could come before the first record in the current sequence, as in the case of

Sally Ackroyd.

 The new record may need to be inserted between two records in the current sequence, as

with Huw Cartwright.

 The new record could come after the last record in the sequence, as with Chris Edwards.

We will need to program each of these cases separately.

Begin by double-clicking the 'Add' button to create a method. We will first add lines of code, as

shown below, to collect the surname and forename from the text fields. The program will carry out

a presence check to ensure that text values have been entered, then call the add() method which

we will insert immediately after the button click method.

start 0 Mike Andrews 1 Susan Brown 2 Bob Davies null

Sally Ackroyd Chris Edwards Huw Cartwright

400 Java Programming for A-level Computer Science

private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {

 String surnameEntered=txtSurname.getText();
 String forenameEntered=txtForename.getText();
 if(surnameEntered.length()>0 && forenameEntered.length()>0)
 {
 add(surnameEntered,forenameEntered);
 }
 txtSurname.setText("");
 txtForename.setText("");

 }

 private void add(String surnameEntered, String forenameEntered)
 {

 }

We will set up two variables, previous and current, which will be useful when we search the linked
list to find the correct position to insert a new record. Both of these will be initialised to the value of
the start pointer.

We will first check for the case where the linked list is empty. This will be true if the start pointer
has set the value of current to point to an empty surname. Add lines of code to detect this situation.

 private void add(String surnameEntered, String forenameEntered)
 {

 int previous=startPointer;
 int current=startPointer;
 Boolean finished;
 String nameEntered = surnameEntered + " " + forenameEntered;
 String name;

 if (surname[current]==null)
 {
 emptyList(current);
 }
 displayTable();

 }

We will now design an emptyList() method to handle the data and pointer values.

For an empty list, we simply store the surname and forename in the array position indicated by the
start pointer, and leave the pointer value of the new record as -1 to mark the end of the list. For
example, if we add Hughes, Steven to an empty list, the data should be stored as:

Surname

Hughes

Forename

Steven

Pointer

 -1

[0]
[1]
[2]
[3]

Start pointer 0

 Chapter 14: Linked lists 401

Insert the emptyList() method immediately after the add() method.

 if (surname[current]==null)
 {
 emptyList(current);
 }
 displayTable();
 }

 private void emptyList(int current)
 {
 surname[current]=txtSurname.getText();
 forename[current]=txtForename.getText();
 }

Run the program. Enter 'Hughes' into the Surname text field and 'Steven' into the Forename text
field, then click the Add button. Check that the name appears correctly in the table at Location 0,
and that the Pointer value is still -1.

Close the program window and return to the NetBeans editing screen. The next situation to
consider is that the list already contains data, but the new name to be added comes before the
current first name in the sequence. For example, if the list already contains Stephen Hughes:

 and we now add Peter Edwards, the situation should become:

Notice that the record for Edwards, Peter has been stored in the next available empty location, and
the start pointer has been changed to point to this location. The pointer from Peter Edwards now
links to the record in position 0.

Surname

Hughes

Forename

Steven

Pointer

 -1

[0]
[1]
[2]
[3]

Start pointer 0

Surname

Hughes

Edwards

Forename

Steven

Peter

Pointer

-1

 0

[0]
[1]
[2]
[3]

Start pointer 1

402 Java Programming for A-level Computer Science

Add lines of code to the add() method to detect the situation where a new record needs to be
inserted before the current first record of the linked list. We use the compareTo() function to check
whether the name at the start of the list comes later in the alphabet than the name which has just
been entered.

 private void add(String surnameEntered, String forenameEntered)
 {
 int previous=startPointer;
 Boolean finished;
 String nameEntered=surnameEntered+" "+forenameEntered;
 String name;
 int current=startPointer;

 if (surname[current]==null)
 {
 emptyList(current);
 }

 else
 {
 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)>0)
 {
 startList(current);
 }
 }

 }

Create a startList() method immediately below the add() method to handle the changes to the data
and pointers.

We will also require a function findEmpty(), to locate the first empty group of array elements where
our new name can be stored. When findEmpty() is called, it will check the surname array and give
back the number of the first empty location that it finds.

 private void startList(int current)
 {
 int empty=findEmpty();
 surname[empty]=txtSurname.getText();
 forename[empty]=txtForename.getText();
 pointer[empty]=current;
 startPointer=empty;
 }

 private int findEmpty()
 {
 int location=0;
 while(surname[location]!=null)
 {
 location++;
 }
 return location;
 }

 Chapter 14: Linked lists 403

Run the program. Enter the name Steven Hughes, followed by the name Peter Edwards. Check that
the start pointer and the pointer from Peter Edwards have been set correctly.

Close the program window and return to the NetBeans editing screen. We will now consider the
case where the new name to be added comes after all the existing names, and should be added to
the end of the linked list. For example, suppose that the list already contains two names:

We will now add another name, Susan Morris. The situation should now become:

The new name has been stored in the first available space, at location 2. The pointer from the
previous last item in the list, Steven Hughes, now points to Susan Morris. The pointer from Susan
Morris still has a value of -1, as this name is the final item in the updated list.

We will now insert lines of code into the add() method, as shown below, to handle the situation
where a new record becomes the final item of the linked list.

A WHILE… loop checks each of the existing records, and uses the pointer value to update the current
variable and move on to the next record. When a pointer value of -1 is reached, the end of the list is
detected and the loop ends. We then call a method endList() to add the new name to the existing
list at this point.

Create the endList() method after the add() method, to handle the changes to the data and
pointers.

Surname

Hughes

Edwards

Forename

Steven

Peter

Pointer

-1

 0

[0]
[1]
[2]
[3]

Start pointer 1

Surname

Hughes

Edwards

Morris

Forename

Steven

Peter

Susan

Pointer

 2

 0

-1

[0]
[1]
[2]
[3]

Start pointer 1

404 Java Programming for A-level Computer Science

 if (surname[current]==null)
 {
 emptyList(current);
 }
 else
 {
 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)>0)
 {
 startList(current);
 }

 else
 {
 finished=false;
 while(finished==false)
 {
 if(pointer[current]<0)
 {
 finished=true;
 endList(current);
 }
 else
 {
 current=pointer[current];
 }
 }
 }

 }
 displayTable();
 }

 private void endList(int current)
 {
 int empty=findEmpty();
 surname[empty]=txtSurname.getText();
 forename[empty]=txtForename.getText();
 pointer[current]=empty;
 }

Run the program. Enter the names: Steven Hughes, Peter Edwards and Susan Morris, in that order.

 Steven Hughes should start the empty list.

 Peter Edwards becomes the new first list item, then

 Susan Morris is added to the end of the list.

Check that the pointers are updated correctly.

 Chapter 14: Linked lists 405

Close the program window and return to the NetBeans editing screen.

We have one last situation to consider, when the new name needs to be inserted within the existing
linked list sequence. Suppose that the list currently contains three names:

We will now add Sarah Green. The new name needs to be inserted between Edwards and Hughes in
the sequence. The surname and forename for Sarah Green can be added at the next available
location 3.

Notice that the pointers have been updated. Peter Edwards now links to Sarah Green at location 3,
and Sarah Green links to Steven Hughes at location 0.

Complete the add() method by inserting lines of code to detect the situation where a name should
be inserted within the list. The program checks each existing name in the linked list and stops if it
finds a name later in the alphabet.

Notice that we use the previous variable to keep track of the previous record location examined, so
that pointers can be set correctly when the new name is inserted.

 while(finished==false)
 {
 if(pointer[current]<0)
 {
 finished=true;
 endList(current);
 }
 else
 {

 previous=current;

 current=pointer[current];

 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)>0)
 {
 finished=true;
 midList(current,previous);
 }

 }
 }
 }
 }
 displayTable();
 }

Surname

Hughes

Edwards

Morris

Forename

Steven

Peter

Susan

Pointer

 2

 0

-1

[0]
[1]
[2]
[3]

Start pointer 1

Surname

Hughes

Edwards

Morris

Green

Forename

Steven

Peter

Susan

Sarah

Pointer

 2

 3

-1

 0

[0]
[1]
[2]
[3]

Start pointer 1

406 Java Programming for A-level Computer Science

Create the midList() method after the add() method, to handle the changes to the data and
pointers.

 private void midList(int current, int previous)
 {
 int empty=findEmpty();
 surname[empty]=txtSurname.getText();
 forename[empty]=txtForename.getText();
 pointer[previous]=empty;
 pointer[empty]=current;
 }

Run the program. Enter the names: Steven Hughes, Peter Edwards, Susan Morris and Sarah Green
in that order. Check that the pointers to and from Sarah Green have been set correctly.

Close the program window and return to the NetBeans editing screen.

We have completed the basic functions for adding records at any point in the linked list, so this
would be a good time to set up methods to save the linked list data on disc, and reload the saved
records.

Use the Design tab to change to the form layout view. Go to the Menu Bar at the top of the form
and double-click the 'Save' menu option to create a method.

Add code to delete any previous data file, then open a new file. We will begin by saving the start
pointer value in text format as a two character string.

 private void menuSaveActionPerformed(java.awt.event.ActionEvent evt) {

 File oldfile = new File(filename);
 oldfile.delete();
 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))
 {
 String tStart=String.format("%-2s", startPointer);
 String s = tStart + "***";
 file.write(s.getBytes());
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(linkedList.this, "File error");
 }

 }

 Chapter 14: Linked lists 407

Run the program. Enter several names, then click the Save menu option.

Use Windows Explorer to locate the list.dat file in the linkedList project folder. Open the file with a
text editing application such as Notepad, and check that the file contains the correct start pointer
value.

Close the program window and return to the source code editing screen.

We will now use a loop to save each of the data entries. Fixed length records can be used, with the
location numbers and pointers stored in text form as 2 characters, and the surnames and forenames
stored as 24 character strings.

 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))
 {
 String tStart=String.format("%-2s", startPointer);
 String s = tStart + "***";
 file.write(s.getBytes());

 for (int i=0; i<50; i++)
 {
 if (surname[i]!=null)
 {
 String tLocation=String.format("%-2s", i);
 String tSurname=String.format("%-24s", surname[i]);
 String tForename=String.format("%-24s", forename[i]);
 String tPointer=String.format("%-2s", pointer[i]);
 s = tLocation + tSurname + tForename + tPointer + "***";
 file.write(s.getBytes());
 }
 }

 file.close();
 }
 catch(IOException e)

408 Java Programming for A-level Computer Science

Run the program. Add a series of names in any random order, then check that the pointer values
produce a correct linked list in alphabetical order.

Click the 'Save' menu option. Use a text editing application such as Notepad to open the list.dat file
in the linkedList project folder. Check that the data in the file corresponds to the names and
pointers shown in the table.

Close the program window and return to the NetBeans editing screen. We will now produce a
method to reload the linked list data.

Use the Design tab to select the form layout view, then double-click the 'Open' option from the
Menu Bar to create a method. Begin by adding code which will load the startPointer.

 private void menuOpenActionPerformed(java.awt.event.ActionEvent evt) {

 String tStart;
 String s;
 try
 {
 int position;
 RandomAccessFile file = new RandomAccessFile(filename, "r");
 byte[] bytes = new byte[2];
 file.read(bytes);
 s=new String(bytes);
 tStart=s.substring(0,2).trim();
 startPointer=Integer.valueOf(tStart);
 file.close();
 displayTable();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(linkedList.this, "File error");
 }

 }

 Chapter 14: Linked lists 409

Run the program. Go to the menu bar and click the 'Open' option. Check that the start pointer
value saved earlier is displayed correctly.

Close the program window and return to the code editing screen. Add a block of code to the 'Open'
method which will load each of the records, split the data into the location, surname, forename and
pointer fields, then copy these back into the set of arrays. Each fixed length record has a total length
of 55 bytes, and this value is used to calculate the number of records in the file.

 try
 {
 int position;

 String tLocation;
 String tSurname;
 String tForename;
 String tPointer;

 RandomAccessFile file = new RandomAccessFile(filename, "r");
 byte[] bytes = new byte[2];
 file.read(bytes);
 s=new String(bytes);
 tStart=s.substring(0,2).trim();
 startPointer=Integer.valueOf(tStart);

 int readingCount=(int) (file.length()-5) /55;
 for (int i=0; i<readingCount; i++)
 {
 position=i*55 + 5;
 file.seek(position);
 bytes = new byte[55];
 file.read(bytes);
 s=new String(bytes);
 tLocation=s.substring(0,2).trim(); s=s.substring(2);
 tSurname=s.substring(0,24).trim(); s=s.substring(24);
 tForename=s.substring(0,24).trim(); s=s.substring(24);
 tPointer=s.substring(0,2).trim();
 int n=Integer.valueOf(tLocation);
 surname[n]=tSurname;
 forename[n]=tForename;
 pointer[n]=Integer.valueOf(tPointer);
 }

 file.close();
 displayTable();
 }
 catch(IOException e)

410 Java Programming for A-level Computer Science

Run the program. Click the 'Open' option and check that the full sequence of records are displayed
correctly in the table.

Close the program window and return to the NetBeans editing screen.

We are able to create, save and reload the linked list, but it is not very easy to examine the data in
alphabetical order. In the next section, we will use graphics to display the linked list with the
names shown in their correct order.

Use the tab above the editing window to move to the linkedListDiagram.java page. Click the Design
tab to move to the form layout view. Add a Scroll Pane component to the form, and drag this to a
suitable size. Select a Panel component, then drag and drop this in the middle of the scroll pane.
Rename the panel as pnlDiagram. Set the background property to White, and the preferredSize
property to [1600,1600]. Vertical and horizontal scroll bars should appear on the panel. Right-click
on the panel and select Layout / Absolute Layout.

Click the Events tab at the top of the Properties window, then locate the mouseMoved event. Select
pnlDiagramMouseMoved from the drop down list.

 Chapter 14: Linked lists 411

Add a line of code to the pnlDiagramMouseMoved method to call a drawDiagram() method.

 private void pnlDiagramMouseMoved(java.awt.event.MouseEvent evt) {

 drawDiagram();

 }

Scroll to the top of the program listing and add Java modules which will be needed to create
graphics. We will also add arrays to hold the linked list data, and begin the drawDiagram() method.

package linkedListPackage;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;

public class linkedListDiagram extends javax.swing.JFrame {

 int startPointer;
 int[] pointer = new int[50];
 String[] surname=new String[50];
 String[] forename=new String[50];

 public linkedListDiagram() {
 initComponents();
 }

 private void drawDiagram()
 {

 }

At this point we have a slight problem! In order to display the linked list, the drawDiagram()
method will need access to all the linked list data. Unfortunately, this data is held in the table and
arrays on the previous form and is not yet available to the linkedListDiagram.java page.

A simple way to transfer data from one form to another is to use a data class as a temporary storage
area. Go to the Projects window at the top left of the screen and locate the linkedListPackage
folder. Right-click on linkedListPackage and select New / Java Class. Give the Class Name as 'data',
leaving the Package name as 'linkedListPackage'.

Add variables to the data class to hold the linked list data items and start pointer value.

 package linkedListPackage;

public class data {

 public static int startPointer;
 public static String[] surname=new String[50];
 public static String[] forename=new String[50];
 public static int[] pointer = new int[50];

}

412 Java Programming for A-level Computer Science

We will need to save the linked list into the data class when the 'Display linked list' option is
selected from the Menu Bar of the main program.

Use the tab at the top of the editing window to move to the linkedList.java page.

Select the 'Display linked list' menu item, go to the Properties window and click the Events tab.
Locate the mouseClicked event, then accept menuDiagramMouseClicked from the drop down list.

The menuDiagramMouseClicked() method will open.

We will add a line of code to call a saveData() method, then add this below
menuDiagramMouseClicked().

 private void menuDiagramMouseClicked(java.awt.event.MouseEvent evt) {

 saveData();
 new linkedListDiagram().setVisible(true);

 }

 private void saveData()
 {
 data.startPointer=startPointer;
 for (int i=0;i<50;i++)
 {
 data.surname[i]=surname[i];
 data.forename[i]=forename[i];
 data.pointer[i]=pointer[i];
 }
 }

Return to the linkedListDiagram.java page. Locate the drawDiagram() method and add a line of
code to call a loadData() method.

 private void drawDiagram()
 {

 loadData();

 }

 Chapter 14: Linked lists 413

Add the loadData() method below the drawDiagram() method.

 private void drawDiagram()
 {
 loadData();
 }

 private void loadData()
 {
 startPointer=data.startPointer;
 for (int i=0;i<50;i++)
 {
 surname[i]=data.surname[i];
 forename[i]=data.forename[i];
 pointer[i]=data.pointer[i];
 }
 }

We now have access to the necessary data, and we can continue with drawing the linked list
diagram.

Begin by defining the graphics font style and size which we will use, and produce a fawn colour to
use for the linked list data items. We will then draw a box to contain the start pointer.

 private void drawDiagram()
 {
 loadData();

 Font sanSerifFont = new Font("SanSerif", Font.PLAIN, 12);
 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();
 g.setFont(sanSerifFont);
 int red=0xFF;
 int green=0xE4;
 int blue=0xB5;
 Color fawn = new Color(red,green,blue);
 String s="Start";
 int x=100;
 int y=60;
 g.setColor(Color.black);
 g.drawRect(x,y,120,20);
 g.drawLine(x+44, y, x+44, y+20);
 g.drawString(s,x+8,y+14);
 s="pointer "+startPointer;
 g.drawString(s,x+58,y+14);

 }

Run the program, then use the 'Open' menu option to load the linked list. The data should be

displayed in the table. Click the 'Display linked list' menu option to open the graphics window.

Move the mouse onto the white panel. A box containing the start pointer value should appear, as

shown below.

414 Java Programming for A-level Computer Science

Click the cross at the top right to close the graphics window. We would like to return to the main
program window so that further names can be added to the table, but unfortunately the whole
program closes! Go to the linkedListDiagram.java page to correct this. Click the Design tab to
move to the form layout view, then click on an area outside the panel to select the form. Go to the
Properties window and set the defaultCloseOperation to HIDE by selecting from the drop down list.

Use the Source tab to move to the program code view. We will continue work on the
drawDiagram() method. Add lines of code to draw boxes representing the linked list items.

 g.drawString(s,x+8,y+14);
 s="pointer "+startPointer;
 g.drawString(s,x+58,y+14);

 Boolean finished=false;
 int current=startPointer;
 while(finished==false)
 {
 x=x+20;
 y=y+40;
 g.setColor(fawn);
 g.fillRect(x,y,300,20);
 g.setColor(Color.black);
 g.drawRect(x,y,300,20);
 g.drawLine(x+24, y, x+24, y+20);
 s=String.valueOf(current);
 g.drawString(s,x+8,y+14);
 s=forename[current]+" "+surname[current];
 g.drawString(s,x+32,y+14);
 s="pointer "+pointer[current];
 g.drawString(s,x+238,y+14);
 g.drawLine(x+224, y, x+224, y+20);
 current=pointer[current];
 if (current<0)
 {
 finished=true;
 }
 }

 }

 Chapter 14: Linked lists 415

Notice that the program uses the current variable to record the array position of the data item which
is currently being added to the diagram. The pointer for each data item links to the next item to be
displayed, until the end of the list is reached.

Run the program and use the 'Open' option to load the data into the table. Select the 'Display
linked list' option to open the graphics window, then move the mouse onto the white panel. The
sequence of names should be shown, along with the location of each record and the pointer to the
next record in the sequence. The first record is accessed by the start pointer, and the last record has
a pointer value of -1 to indicate the end of the list.

Close the graphics window and exit from the main program to return to the NetBeans editing screen.

We will add a final improvement to the diagram, which is to draw lines to link the sequence of
records. Locate the drawDiagram() method and add lines of code as shown on the next page.

When you have added the extra lines of code then run the program, load the data file, and select the
'Display linked list' option. Lines linking the records should now be added.

416 Java Programming for A-level Computer Science

 private void drawDiagram()
 {
 loadData();
 Font sanSerifFont = new Font("SanSerif", Font.PLAIN, 12);
 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();
 g.setFont(sanSerifFont);
 int red=0xFF;
 int green=0xE4;
 int blue=0xB5;
 Color fawn = new Color(red,green,blue);
 String s="Start";
 int x=100;
 int y=60;
 g.setColor(Color.black);
 g.drawRect(x,y,120,20);
 g.drawLine(x+44, y, x+44, y+20);
 g.drawString(s,x+8,y+14);
 s="pointer "+startPointer;
 g.drawString(s,x+58,y+14);

 g.drawLine(x+120, y+10, x+130, y+10);
 g.drawLine(x+130, y+10, x+130, y+30);
 g.drawLine(x, y+30, x+130, y+30);
 g.drawLine(x, y+30, x, y+50);
 g.drawLine(x, y+50, x+20, y+50);

 Boolean finished=false;
 int current=startPointer;
 while(finished==false)
 {
 x=x+20;
 y=y+40;
 g.setColor(fawn);
 g.fillRect(x,y,300,20);
 g.setColor(Color.black);
 g.drawRect(x,y,300,20);
 g.drawLine(x+24, y, x+24, y+20);
 s=String.valueOf(current);
 g.drawString(s,x+8,y+14);
 s=forename[current]+" "+surname[current];
 g.drawString(s,x+32,y+14);
 s="pointer "+pointer[current];
 g.drawString(s,x+238,y+14);
 g.drawLine(x+224, y, x+224, y+20);
 current=pointer[current];
 if (current<0)
 {
 finished=true;
 }

 else
 {
 g.drawLine(x+300, y+10, x+310, y+10);
 g.drawLine(x+310, y+10, x+310, y+30);
 g.drawLine(x, y+30, x+310, y+30);
 g.drawLine(x, y+30, x, y+50);
 g.drawLine(x, y+50, x+20, y+50);
 }

 }
 }

 Chapter 14: Linked lists 417

After testing the program, close the windows and return to the NetBeans editing screen.

To complete the linked list project, we should provide procedures for removing items for the linked
list. As in the case of adding items, there are three different cases which must be considered:

 array[0] array[1] array[2]

Each of these options will need to be considered separately, as different combinations of pointers
are involved.

Use the tab at the top of the editing screen to open the linkedList.java page. Click the Design tab to
move to the form layout view, then double-click the 'Delete' button to create a method. Add code
which will access the text fields to obtain the name of the person to be deleted, carry out a presence
check on the data, then call a remove() method. Begin the remove() method underneath.

 private void btnDeleteActionPerformed(java.awt.event.ActionEvent evt) {

 String surnameEntered=txtSurname.getText();
 String forenameEntered=txtForename.getText();
 if(surnameEntered.length()>0 && forenameEntered.length()>0)
 {
 remove(surnameEntered,forenameEntered);
 }

 }

 private void remove(String surnameEntered, String forenameEntered)
 {

 }

Continue the remove() method by adding definitions for the variables which will be needed by the
program. We will then add error trapping to warn the user if they attempt to remove an item from
a list which is already empty.

 private void remove(String surnameEntered, String forenameEntered)
 {

 int previous=startPointer;
 Boolean finished;
 String nameEntered=surnameEntered+" "+forenameEntered;
 String name;
 Boolean found=false;
 int current=startPointer;
 if (surname[current]==null)
 {
 JOptionPane.showMessageDialog(linkedList.this, "The list is empty");
 }

 }

start 0 Mike Andrews 1 Susan Brown 2 Bob Davies null

delete an item at

the start of the list

delete an item from

the end of the list

delete an item

within the list

418 Java Programming for A-level Computer Science

Run the program, but do not add or load data. Enter a name in the text fields, then click the 'Delete'
button. Check that an error message is given.

Close the program window and return to the code editing screen.

We will now consider the case where the first item in the list is deleted. Add lines of code to the
remove() method, then insert a removeStart() method underneath.

 if (surname[current]==null)
 {
 JOptionPane.showMessageDialog(linkedList.this, "The list is empty");
 }

 else
 {
 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)==0)
 {
 removeStart(current);
 found=true;
 }
 if (found==false)
 {
 JOptionPane.showMessageDialog(linkedList.this,"Name not found");
 }
 else
 {
 displayTable();
 }
 }

 }

 private void removeStart(int current)
 {
 surname[current]=null;
 forename[current]=null;
 if (pointer[current]>=0)
 {
 startPointer=pointer[current];
 pointer[current]=-1;
 }
 }

The removeStart() method clears the deleted name from the arrays, and changes the start pointer
so that the next list item becomes the new start of the linked list.

 Chapter 14: Linked lists 419

Run the program and use the 'Open' menu option to load the data file. Identify the first name in the
linked list. Enter this name in the text fields, then click the 'Delete' button. Check that the name has
been deleted from the table, and the start pointer has been updated. Open the linked list diagram
and check that this is displaying the start of the list correctly.

Close the program windows and return to the code editing screen. We will now consider the case
where the last item in the list is deleted. Add lines of code to the remove() method.

 if (name.compareTo(nameEntered)==0)
 {
 removeStart(current);
 found=true;
 }

 else
 {
 finished=false;
 while(finished==false)
 {
 if(pointer[current]<0)
 {
 finished=true;
 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)==0)
 {
 removeEnd(current,previous);
 found=true;
 }
 }
 previous=current;
 current=pointer[current];
 }
 }

 if (found==false)
 {
 JOptionPane.showMessageDialog(linkedList.this, "Name not found");
 }

420 Java Programming for A-level Computer Science

Add a removeEnd() method below the remove() method.

 private void removeEnd(int current, int previous)
 {
 surname[current]=null;
 forename[current]=null;
 pointer[current]=-1;
 pointer[previous]=-1;
 }

The removeEnd() method clears the deleted name from the arrays and resets the pointer from the
previous record to -1, so that the previous record becomes the new final record in the linked list.

Run the program and use the 'Open' menu option to load the data file. Identify the last name in the
linked list. Enter this name in the text fields, then click the 'Delete' button. Check that the name has
been deleted from the table, and the pointer from the previous record has been reset to -1. Open
the linked list diagram and check that this is displaying the end of the list correctly.

Close the program windows and return to the code editing screen. The final case we have to
consider is an item being deleted from within the linked list sequence.

Add further lines of code to the remove() method, as shown on the next page, and insert a
removeMid() method underneath.

The removeMid() method clears the deleted name from the arrays. The pointer of the previous
record is then reset to the location of the record which is next ahead in the sequence, missing out
the deleted record.

 Chapter 14: Linked lists 421

 while(finished==false)
 {
 if(pointer[current]<0)
 {
 finished=true;
 name=surname[current]+" "+forename[current];
 if (name.compareTo(nameEntered)==0)
 {
 removeEnd(current,previous);
 found=true;
 }
 }

 else
 {
 name=surname[current]+" "+forename[current];
 System.out.println("Name = "+name);
 System.out.println("NameEntered = "+nameEntered);
 if (name.compareTo(nameEntered)==0)
 {
 finished=true;
 removeMid(current,previous);
 found=true;
 finished=true;
 }
 }

 previous=current;
 current=pointer[current];
 }
 }
 if (found==false)
 {
 JOptionPane.showMessageDialog(linkedList.this, "Name not found");
 }
 else
 {
 displayTable();
 }
 }
 }

 private void removeMid(int current, int previous)
 {
 surname[current]=null;
 forename[current]=null;
 pointer[previous]=pointer[current];
 pointer[current]=-1;
 }

Run the completed program. Check that:

 Names can be added at any position in the linked list.

 Names can be deleted from any position in the list.

 A linked list can be saved on disc, then reloaded and displayed in the table.

 The linked list is shown in correct alphabetical sequence in the diagram.

